Quelle est la différence entre le Machine Learning et le Deep Learning ?

L’intelligence artificielle est rendue possible par plusieurs concepts. Les deux plus importants sont le Machine Learning en ce qui concerne l’apprentissage automatique et le Deep Learning en ce qui concerne l’apprentissage profond. Bien qu’il s’agisse de deux méthodes différentes, ces deux termes sont souvent confondus.

Qu’est-ce que le machine learning ?

C’est une technologie connue pour son ancienneté et sa simplicité. Cette technologie est déployée par le biais d’un système algorithmique qui s’adapte automatiquement en fonction des retours faits par l’utilisateur. En termes simples, la machine apprend sans programmation. Une condition essentielle pour sa mise en œuvre est l’existence de données organisées. Ensuite, la structuration et la catégorisation des données serviront à alimenter le système. Cela lui permettra d’assimiler la classification de nouvelles données similaires. Sur cette base, le système effectue ensuite des actions.

Petit point sur le deep learning ?

Appartenant à la grande famille de l’apprentissage, le Deep Learning s’appuie sur les technologies de réseaux de neurones pour apprendre des fonctionnalités à un niveau supérieur en utilisant les informations fournies. Les données structurées ne sont pas nécessaires pour ce type d’intelligence artificielle. Inspiré du cerveau humain, il s’agit de neurones artificiels organisés en couches où chaque couche contribue à alimenter la couche suivante et permet d’ajuster le modèle mathématique sous-jacent. Les données non structurées ne sont pas un obstacle à son déploiement. Mais il est clair que le Deep learning doit s’appuyer sur un large volume d’informations/ de situations pour être performant dans la détection des similarités.

Quelle est la différence entre les deux ?

La différence entre ces deux technologies d’intelligence artificielle réside dans les résultats produits par les différents algorithmes et les méthodes d’intervention en aval. La première technologie traite des données quantitatives et structurées. Cependant, les retours de prédictions inexactes nécessitent l’intervention d’un ingénieur pour d’éventuels ajustements. En revanche, la seconde, le modèle Deep Learning, dispose d’algorithmes capables de déterminer l’exactitude d’une prédiction sans intervention humaine. Le Deep Learning est aujourd’hui quasiment incontournable dans la reconnaissance de forme, le traitement du langage naturel (NLP), la construction d’un bot ou encore le diagnostic médical.