En quoi le chatbot pourrait améliorer la relation client d’une entreprise ?

En quoi le chatbot pourrait améliorer la relation client d’une entreprise ?

Les besoins des consommateurs évoluent en permanence, et les enseignes ont bien compris les enjeux de la satisfaction dans le parcours des acheteurs. L’innovation est la recette magique pour offrir une expérience incomparable. Alors en quoi le chatbot pourrait-il améliorer la relation client d’une entreprise ?

Il réduit le temps de réponse

Intelligence artificielle et émotion, c’est l’association improbable. Et pourtant, l’agent conversationnel est capable de susciter une émotion positive grâce à des interactions rapides et efficaces comme une prise de rendez-vous, une information commerciale, ou encore un suivi de commande. Il est disponible à n’importe quelle heure de la journée et de la nuit, et supprime le temps d’attente. Avec lui, terminé les transferts sauvages de service en service pour trouver le bon interlocuteur ; il traite les demandes simples avec succès. Les requêtes les plus fréquentes pourront être automatisées et seront prises en charge par le bot. Libérés des tâches sans valeur ajoutée, les téléconseillers auront la liberté de se concentrer sur des activités plus valorisantes et répondre aux sollicitations complexes.

La majorité des techniques de ce traitement reposent sur l’apprentissage automatique pour déduire le sens des langues humaines. Cette technologie se positionne par ailleurs comme étant la force motrice des applications fréquentes comme les applications de traduction de langues, les traitements de texte (pour vérifier l’exactitude grammaticale des textes), les applications d’assistant personnel, etc.

Il fait bien du premier coup

Le chatbot maîtrise la relation avec un accès direct à l’historique client. Sa mission prioritaire est d’apporter une réponse immédiate et pertinente. Sa connaissance du dossier lui permet de résoudre un problème dès le premier contact, évitant ainsi la réitération d’appels et l’insatisfaction. Et pourquoi ne pas imaginer une démarche proactive dont l’objectif serait d’anticiper les besoins, voire de détecter des opportunités de business ? La machine et l’humain seraient ainsi complémentaires pour offrir un service efficace et performant. La solution de conversation en ligne permet de réduire les coûts de traitement du service support et d’améliorer l’image d’une entreprise.

De grandes marques lui ont fait confiance et ont vu nettement leurs sondages de satisfaction s’améliorer : SNCF, FNAC, Orange…

Machine Learning ou Deep Learning ?

Machine Learning ou Deep Learning ?

L’intelligence artificielle est rendue possible par plusieurs concepts. Les deux plus importants sont le Machine Learning en ce qui concerne l’apprentissage automatique et le Deep Learning en ce qui concerne l’apprentissage profond. Bien qu’il s’agisse de deux méthodes différentes, ces deux termes sont souvent confondus.

Qu’est-ce que le machine learning ?

C’est une technologie connue pour son ancienneté et sa simplicité. Cette technologie est déployée par le biais d’un système algorithmique qui s’adapte automatiquement en fonction des retours faits par l’utilisateur. En termes simples, la machine apprend sans programmation. Une condition essentielle pour sa mise en œuvre est l’existence de données organisées. Ensuite, la structuration et la catégorisation des données serviront à alimenter le système. Cela lui permettra d’assimiler la classification de nouvelles données similaires. Sur cette base, le système effectue ensuite des actions.

Petit point sur le deep learning ?

Appartenant à la grande famille de l’apprentissage, le Deep Learning s’appuie sur les technologies de réseaux de neurones pour apprendre des fonctionnalités à un niveau supérieur en utilisant les informations fournies. Les données structurées ne sont pas nécessaires pour ce type d’intelligence artificielle. Inspirées du cerveau humain, il s’agit de neurones artificiels organisés en couches où chaque couche contribue à alimenter la couche suivante et permet d’ajuster le modèle mathématique sous-jacent. Les données non structurées ne sont pas un obstacle à son déploiement. Mais il est clair que le Deep learning doit s’appuyer sur un large volume d’informations/ de situations pour être performant dans la détection des similarités.

Quelle est la différence entre les deux ?

La différence entre ces deux technologies d’intelligence artificielle réside dans les résultats produits par les différents algorithmes et les méthodes d’intervention en aval. La première technologie traite des données quantitatives et structurées. Cependant, les retours de prédictions inexactes nécessitent l’intervention d’un ingénieur pour d’éventuels ajustements. En revanche, la seconde, le modèle Deep Learning, dispose d’algorithmes capables de déterminer l’exactitude d’une prédiction sans intervention humaine. Le Deep Learning est aujourd’hui quasiment incontournable dans la reconnaissance de forme, le traitement du langage naturel (NLP), la construction d’un bot ou encore le diagnostic médical.

Comment savoir si votre projet est adapté au Développement en Architecture Microservices ?

Comment savoir si votre projet est adapté au Développement en Architecture Microservices ?

Les applications développées en microservices procurent de nombreux avantages. Les utilisateurs jouiront entre autres d’une grande robustesse. De même, il sera plus facile de se lancer dans la maintenance, de par l’indépendance des services entre eux. Au vu des atouts, une entreprise peut envisager le projet. Elle devrait néanmoins connaître ses conditions. 

Le découpage en blocs fonctionnels

Le principe fondamental d’une architecture microservices est que chaque micro service répond à une fonctionnalité métier, et une seule. Il y a donc un découpage en blocs fonctionnels à faire de l’application à réaliser. Plus le projet est d’importance, plus ce découpage, à condition qu’il soit bien fait (pas ou peu d’interdépendance), accélère l’indépendance du développement, du test et du déploiement de ces microservices. La question peut se poser sur des projets de petite taille.

Beaucoup de microservices = gestion plus complexe ?

La question peut être posée dès lors que l’application finale se constitue de beaucoup de microservices, dont il faut gérer leur intégration et leur répartition dans une architecture physique capable de digérer l’exécution parallélisée de ses microservices. Dans l’hypothèse où il existe des dépendances entre les services, les mises à jour des services peuvent être source de complexité tant sur le plan des tests (pour revérifier une chaîne de microservices dépendants) que sur le plan du déploiement.

Une infrastructure adéquate

La gestion de la mémoire avec une mise en cache, une architecture distribuée restent des points cruciaux dans la mise en place d’une application orientée microservices. Par ailleurs, à l’heure où toutes les entreprises sont concernées par la cybersécurité, un nombre important de microservices peut accroitre une vulnérabilité face à la menace. Il y a donc un travail important de dimensionnement des ressources physiques, et de vérification des potentielles défaillances au niveau de chaque service.

Certaines peuvent être de haut niveau et abstraites, lorsqu’une personne utilise par exemple une remarque sarcastique pour transmettre une information. Pour bien saisir le langage humain, il faut comprendre non seulement les mots, mais aussi comment les concepts sont reliés pour transmettre le message souhaité.