Critères d’éligibilité d’un BRMS

Critères d’éligibilité d’un BRMS

Aux origines du BRMS (moteur de règles)

La technologie des moteurs de règles / BRMS ne date pas d’hier. Née sous l’impulsion des américains dans les années 70 avec notamment la conception et de l’algorithme de RETE, elle a connu ses premières gloires début des années 80 sous l’appellation des systèmes experts. Le moteur de règle est une technologie ayant considérablement évolué, en traversant des années plus creuses (les années 90) avant de rebondir, au début de la bulle Internet, en solution technologique de Business Rules Management System (BRMS).

Ainsi, aujourd’hui, une vingtaine d’éditeurs postulent sur ce segment technologique, pour la plupart américains. Pour autant, il s’agit pour les clients d’apprécier la pertinence ou non de l’usage d’un BRMS pour répondre à la problématique métier qui est la leur.

Alors, comment apprécier cette pertinence ?

Le BRMS en quelques mots

Tout d’abord, il s’agit de transposer la logique métier, historiquement codée dans le patrimoine informatique des entreprises ou issue de l’expertise humaine, en règles communément appelées règles SI ALORS. Néanmoins, le SI contient les conditions qui doivent être évaluées à VRAI pour que la règle soit éligible au déclenchement. Une règle éligible s’exécute, c’est-à-dire que le moteur de règles exécute les actions contenues dans la partie ALORS de la règle. Une règle exécutée peut permettre potentiellement qu’une autre règle devienne éligible et ainsi de suite.

Ainsi, un raisonnement logique apparait par le déclenchement successif des règles éligibles.

Voici un exemple :

Par ailleurs, certains éditeurs fournissent en réalité 3 représentations possibles de la logique métier : les règles, les tables de décision (qui s’apparentent à une table de feuille Excel) et des arbres de décision.

Au final, l’objectif d’une technologie BRMS est bien d’améliorer la lisibilité de la logique métier répartie dans les applicatifs du SI et de permettre ainsi une meilleure maintenabilité de cette logique en créant une indépendance entre le contenu d’un ensemble de règles (service de règles) et la manière dont on le consomme au sein du SI.

Comment évaluer la pertinence ou non d’un BRMS ?

Malgré les avantages énoncés du BRMS, son usage n’est pas systématiquement pertinent au regard du contexte et de la problématique des entreprises qui se poseraient la question de l’utiliser.

De ce fait, il s’agit de vérifier un certain nombre de critères d’appréciation qui sont résumés ici :

La démarche de Pacte Novation est axée autour de la réalisation d’ateliers avec les différents acteurs partie prenante dans le futur projet, l’analyse et la retranscription des éléments recueillis durant ces ateliers, la rédaction de notes, et la restitution/présentation des conclusions aux instances de décision du client.

En tout état de cause, la clé du succès d’un projet BRMS est d’abord et avant tout, l’adhésion à cette technologie de toutes les parties prenantes du projet.

Nous vous proposons des solutions autour du système d’information, système expert, embarqué et édition de logiciels,  nous permettant de répondre à la plupart des exigences du marché. 

L’Intelligence Artificielle au service d’une e-Réputation écologique?

L’Intelligence Artificielle au service d’une e-Réputation écologique?

De plus en plus, l’environnement et la protection de la planète deviennent un enjeu sociétal et politique fort. Appauvrissement des ressources naturelles, pollution, perte de la biodiversité… la terre se dégrade et notre qualité de vie avec.

L’e-réputation de l'écologie : une valeur éthique indispensable

Tout d’abord, de nombreux facteurs expliquent cette dégradation : exploitation par des entreprises peu respectueuses, besoin de survie de populations locales, arrivées d’espèces invasives. En effet, les grandes entreprises, par leurs activités humaines, peuvent avoir un impact écologique fort (positif ou négatif). Celles dont l’activité aurait un impact négatif sur l’environnement se trouvent être la cible des ONGs, de la presse spécialisée et des activistes écologiques, au travers de l’écriture d’articles, de tweets, qui en l’espace de quelques lignes peuvent mettre à mal l’image de ces entreprises. 

Tout un chacun peut lire ces articles et avoir une perception de la « bonne » ou « mauvaise » réputation écologique d’une société. Mais est-ce qu’une Intelligence Artificielle pourrait avoir la même perception ?

Ainsi, rien n’existe ou n’est en partie réalisé en la matière. Si la e-Réputation est un enjeu en premier lieu pour les grands groupes, pour autant, les applications informatiques dédiées à la détection d’une mauvaise réputation, de surcroît en matière écologique, n’existent pas.

L’e-réputation : du « buzzword » à la réalité d’un enjeu

Internet a fait naître l’identité digitale de chacun et donc une prise de conscience qu’elle peut être à « charge » comme à « décharge » dans la construction d’une réputation et d’une image qui peut nous échapper. Cela a donné naissance au terme E-réputation (Chun & Davies) qui devient un « Buzzword ».

Ainsi, de nombreux grands groupes ont compris cela et ont mis en place des cellules d’expertises de gestion de de l’E-réputation, applicables à la sphère écologique, à travers le « monitoring » des publications du Web. Ainsi, il s’agit de surveiller l’ensemble des contenus mentionnant la personne, la société, la marque de produit, et estimer précisément la visibilité d’un sujet, surtout lorsque celui-ci est à « charge ». 

Par ailleurs, une célèbre chaîne de vêtements en a fait les frais en 2013. A l’époque le PDG avait déclaré que sa marque ne s’adressait pas aux personnes corpulentes. Les Tailles XL et XXL avaient été alors retirées des rayons. Quasi immédiatement sur le Web, la marque est devenue une marque pour « gens beaux » et une enquête journalistique a démontré que les vendeurs étaient choisis sur des critères physiques. Les internautes ont donc réagi en se saisissant de cette politique de recrutement discriminatoire et les mentions négatives se sont multipliées évoquant les valeurs de la marque et ses figures dirigeantes. 

La marque a été entachée entraînant une baisse de 18% de l’action et une perte nette de 6 M$ de bénéfices, avec une répercussion durable en interne. Comme quoi, dans l’écologie ou n’importe quel autre secteur, la réputation en ligne, c’est essentiel.

Comment surveiller automatiquement les indices réputationnels ?

Il existe aujourd’hui des éditeurs de plateformes permettant de réaliser des analyses quantitatives automatiques et sur-mesure comme Yext, Brand24, OBI Brand Monitor, LocalClarity, Yotpo, Djubo, Grade.us, Review Ninja, HootSuite, TalkWalker, Cision, BrandWatch, WizVille, TagBoard, Twitter Counter, Hearsay Social, BirdEye, Feefo, DialogFeed, Infegy Atlas … Mais la plupart sont des outils dont les principales fonctionnalités sont des mécanismes d’alertes d’avis et de surveillance de conversations. Or, personne ne peut maîtriser l’ensemble des conversations ou articles sur le web.

Dans le monde de l’écologie et de l’activisme environnemental, aucune des plateformes citées précédemment ne permet de détecter un risque réputationnel au regard de l’impact sur l’environnement sans analyse humaine.

Or la masse d’information est telle qu’il est quasi impossible de les analyser « à la main » et pour autant, une notation de e-réputation qu’elle soit écologique ou autre ne peut être juste que si la totalité de l’information est traitée.

C’est pourquoi l’usage de l’Intelligence Artificielle apparaît dans les projets d’automatisation de la perception d’un risque réputationnel à travers notamment des outils d’analyse de sentiments.

Analyse de sentiments des articles

Pourquoi, comment ?

L’analyse de sentiment (parfois appelée opinion mining) est la partie du text mining qui essaie de définir les opinions, sentiments et attitudes présente dans un texte ou un ensemble de texte. Développée essentiellement depuis les années 2000, elle est particulièrement utilisée en marketing pour analyser par exemple les commentaires des internautes ou les comparatifs et tests des blogueurs ou encore les réseaux sociaux. Mais elle peut également être utilisée pour sonder l’opinion publique sur un sujet, ou encore pour chercher à caractériser les relations sociales dans les forums.

Par ailleurs, l’analyse de sentiment demande bien plus de compréhension de la langue que l’analyse de texte et la classification par sujet. En effet, si les algorithmes les plus simples considèrent uniquement les statistiques de fréquence d’apparition des mots, cela se révèle en général insuffisant pour définir l’opinion dominante dans un document, surtout lorsque le contenu est court comme des messages dans un forum ou des tweets.

De ce fait, l’analyse de sentiment « basique » se focalise sur une seule dimension : le sentiment général est-il positif ou négatif ? Les techniques visant à déterminer un (ou plusieurs) sentiments généraux comme l’envie, la colère, la frustration ou la joie relèvent plus d’une forme d’adaptation des méthodes de découverte de sujet ou de méthodes de classification.

L'analyse peut s'effectuer à différents niveaux :

  • Au niveau du document : détermine l’opinion générale de l’ensemble du document. Cette analyse fonctionne bien pour des documents qui présentent un point de vue précis, mais moins pour des comparaisons car elle ne fera pas la différence entre les sujets abordés.
  • Au niveau de la phrase : détermine l’opinion générale d’une phrase (positive, négative ou neutre). Cette analyse peut donner une mesure de la « neutralité » d’un texte. Les méthodes utilisées sont celle de l’analyse de subjectivité.
  • Au niveau des aspects (aussi appelé Feature level) : au lieu de déterminer les entités à analyser en fonction de critère structuraux (phrase, paragraphe, document) ces méthodes se basent sur une analyse de corrélation entre l’opinion émise et la cible de cette opinion. Par exemple, la phrase « Le sujet du cours me passionne mais le professeur est ennuyeux. » présente deux sentiments sur l’entité « cours » : le sujet qui est perçu comme positif et le professeur, qui est perçu comme négatif. Ce niveau d’analyse permet de différencier les aspects qui sont aimés ou non par les auteurs des textes et ainsi permet plus facilement de déterminer des remédiations possibles. En revanche il est très difficile à mettre en place car extrêmement complexe, notamment la mise en relation des entités mentionnées.

Aujourd’hui des solutions d’Intelligence Artificielle existent et progressent considérablement en la matière. Pour autant, aucune IA n’est encore capable de comprendre l’ironie ou les sous-entendus !

Nous vous proposons des solutions logicielles autour des problématiques en intelligence artificielle & BRMS nous permettant de répondre à la plupart des exigences du marché. 

Le Data Lab, une stratégie de fidélisation et de notation au cœur de votre business model

Le Data Lab, une stratégie de fidélisation et de notation au cœur de votre business model

Qu’est-ce que le Data Lab ?

Le datalab est une stratégie de marketing qui permet d’améliorer sa relation et la fidélisation de sa clientèle. Cette technique prend en considération l’ensemble du comportement des clients en analysant ses habitudes de consommation vis-à-vis d’un produit en particulier. L’objectif de cette stratégie est d’apporter des solutions et réponses concrètes face à la demande qui se diversifie et qui augmente en même temps. Le datalab est une solution marketing que l’on peut utiliser seul ou coupler avec d’autres stratégies s’inscrivant dans le même champ.

L’objectif premier est de gagner du temps et de réaliser de bons scores. Pour avoir une visibilité sur les habitudes des consommateurs, le datalab évalue chaque client sur son intérêt pour un produit en particulier, sur ses fréquences d’achat et anticipe son comportement sur le court, moyen et long terme face à un produit de la même catégorie.

Comment fidéliser sa clientèle avec le Data Lab ?

Un client sera fidèle à un produit ou à une marque non pas parce qu’il l’aime, mais plutôt par habitude. Lorsque le client est satisfait et trouve son intérêt dans l’usage d’un produit en particulier, il s’instaure une routine qu’il ne souhaite pas briser. En effet, pourquoi changer ses habitudes lorsque l’on a toujours agi ainsi et que cela nous convient ?

Néanmoins, on ne peut qualifier cette démarche comme de la véritable « fidélité ». On parlera plutôt d’inertie et de réticence à l’idée de briser une routine.

L’une des meilleures stratégies pour fidéliser un client consiste à se mettre à leur place. Un client pense, réfléchit et sera fidèle à ce qui lui paraît simple et utile. Il peut être intéressant de mettre en place de manière ponctuelle et modérée, en plus de l’achat de son produit préféré, une offre de fidélité (sous forme de promotion ou de cadeau).

Le contrôle des horaires de trains, un enjeu à chaque instant

Le contrôle des horaires de trains, un enjeu à chaque instant

Parce que « le temps c’est de l’argent », chaque minute voire chaque seconde de retard chamboule le reste de la journée. Pour une économie de temps et afin de limiter les impacts négatifs sur les usagers des lignes ferroviaires, un contrôle des horaires de trains est crucial. Le CTS (Compagnie des Transports Strasbourgeois) temps réel a été mis en place afin de connaître à l’avance, l’heure de passage des trains, des bus et des trams. Ce concept permet d’éviter les retards et de gagner plus de temps pour les autres activités.

Mettre les TIC au service du secteur ferroviaire

La mise en place du contrôle des horaires de train découle de la digitalisation du secteur ferroviaire et de l’utilisation des TIC (Technologies de l’Information et de la Communication) pour la collecte et la transmission des informations aux usagers. Grâce aux nouvelles infrastructures : les capteurs, le système de surveillance au sol, les outils et les différentes applications pour transmettre les données aux usagers des lignes ferroviaires, le contrôle des horaires des trains est devenu possible.

Cts temps réel : limiter les problèmes d’horaires

Être en retard à un rendez-vous, manquer le train pour se rendre au travail ou rater le dernier tram pour rentrer à la maison, nombreuses sont les difficultés auxquelles les usagers font face à cause des problèmes d’horaires. Dans la plupart des cas, c’est à cause d’un décalage lors de la transmission des données ou que l’information a fait l’objet d’un changement depuis le dernier contrôle. Avec le cts temps réel, vous recevez des informations en temps réel et sans le moindre écart. Vous obtenez des informations précises sur les horaires de votre ligne, suivant les jours et les heures de circulation des trains. Vous pouvez même consulter à l’avance si des perturbations et déviations ont lieu au cours de la journée ou dans un futur proche.

Fait Divers :

Au Japon, la ponctualité est de mise et on ne rigole pas avec ça. Et pour dire, après qu’un train soit arrivé en gare avec une minute de retard, une enquête a été menée (Mishima, Japon) en mai dernier.

Mais quelle en était la cause ? Eh bien une envie de pipi ! Le conducteur du train à grande vitesse avait en effet quitté son poste quelques instants pour aller aux toilettes, entrainant donc un léger retard…

Comme quoi, le cts temps réel, ça a son importance !