Data Mining, comment analyser les sources de données dans un processus de Big Data ?

Data Mining, comment analyser les sources de données dans un processus de Big Data ?

À l’ère moderne où le Big Data est devenu un enjeu de prime importance, l’exploration de données se présente comme un processus qui permet de définir des modèles utiles à partir d’une grande quantité de données. Dans les lignes à suivre, découvrez quelques techniques employées dans le Data Mining.

Qu’est-ce que le Big Data ?

Le Big Data se présente comme une solution technologique qui offre la possibilité de faire à la fois la collecte, l’analyse, la comparaison, la reconnaissance, la classification et l’utilisation de différentes données telles que des discussions ou commentaires sur les sites sociaux, des images, des documents et autres types de fichiers. On désignera plus généralement par Big Data des ressources d’informations structurées ou non structurées qui, selon leurs qualités et leurs quantités, peuvent servir à apporter de la valeur ajoutée d’une manière ou d’une autre. L’exploitation de ces ressources va ainsi imposer l’utilisation d’outils analytiques de différents types.

Méthode du Data Mining dans un processus du Big Data

Extraction de données

Le développement des technologies de l’information a généré une quantité énorme de données dans divers domaines, données qu’il faut capter et stocker.Il a fallu donc imaginer des technologies et architectures massivement parallèles pour répondre au volume de données à capter en temps réel. Les moyens de stockage ont eux aussi évolué pour répondre à la volumétrie et la rapidité de manipulation sous l’impulsion des acteurs influenceurs du net qui ont fait naître le No SQL (Not Only SQL) pour digérer une information qui peut être un texte, une image, une vidéo, etc …L’idée est bien de permettre de stocker, de filtrer et de manipuler ces données précieuses afin de procéder à des prises de décision pointues. L’exploration de données se présente donc comme un processus d’extraction d’informations et de modèles utiles à partir de données précédemment stockées.

Exploration de données : un processus en plusieurs étapes

L’exploration de données est un processus logique qui est utilisé, comme le nom l’indique, pour parcourir une grande quantité de données afin de trouver des éléments utiles. Un objectif, entre autres, de cette technique est de mettre en place ou de trouver des modèles analytiques qui étaient auparavant inconnus. Une fois ces modèles trouvés, il peut en être fait usage pour prendre certaines décisions stratégiques afin de booster le développement des activités d’une entreprise ou autre entité. Les trois étapes impliquées dans le processus peuvent être listées comme suit :

  • Exploration : dans la première étape de l’exploration, les données sont nettoyées et transformées sous une autre forme. Par la suite, les variables importantes et la nature des données en fonction du problème sont déterminées.
  • Identification des modèles : une fois que les données ont été explorées, affinées et définies pour les variables spécifiques, la deuxième étape consiste à identifier des modèles. Il s’agira d’identifier et de sélectionner les modèles qui permettent la meilleure prédiction.
  • Déploiement : les modèles sont déployés pour obtenir le résultat souhaité.

En intelligence artificielle, que signifie NLP ?

En intelligence artificielle, que signifie NLP ?

Le NLP (Natural Language processing ou Traitement Naturel du Langage en français) est la technologie utilisée pour aider les machines à comprendre le langage naturel de l’homme. Il n’est pas aisé d’apprendre aux machines à comprendre notre manière de communiquer. D’importantes avancées ont cependant été réalisées ces dernières années pour faciliter aux machines la compréhension de notre langage.

C’est quoi le traitement naturel du langage ?

Le NLP est une branche de l’intelligence artificielle traitant de l’interaction entre les ordinateurs et les êtres humains en utilisant le langage naturel. L’objectif ultime du traitement naturel du langage est de lire, déchiffrer, comprendre et donner un sens aux langages humains d’une façon qui soit utile.

La majorité des techniques de ce traitement reposent sur l’apprentissage automatique pour déduire le sens des langues humaines. Cette technologie se positionne par ailleurs comme étant la force motrice des applications fréquentes comme les applications de traduction de langues, les traitements de texte (pour vérifier l’exactitude grammaticale des textes), les applications d’assistant personnel, etc.

Un ingénieur aux compétences techniques transverses

L’ingénieur DevOps s’inscrit dans l’évolution des métiers du secteur informatique. C’est un facilitateur technique qui accompagne les équipes agiles afin de réduire le temps de mise en production. En garantissant un passage automatisé entre les différents environnements, il s’assure de l’intégration, la qualité et le déploiement du code produit. Sa double compétence se traduit par une expertise certaine aussi bien sur la partie développement que sur le versant exploitation. Pour mener à bien sa mission, il doit maîtriser des outils spécifiques permettant de programmer, gérer, tester et administrer les systèmes informatiques.

Le Natural Language processing est-il difficile ?

Le traitement naturel du langage est considéré comme un problème difficile en informatique. C’est cependant la nature du langage humain qui rend le NLP difficile. Les règles régissant la transmission des informations via des langues naturelles ne sont pas faciles à comprendre pour les machines.

Certaines peuvent être de haut niveau et abstraites, lorsqu’une personne utilise par exemple une remarque sarcastique pour transmettre une information. Pour bien saisir le langage humain, il faut comprendre non seulement les mots, mais aussi comment les concepts sont reliés pour transmettre le message souhaité.

Les techniques utilisées dans le traitement naturel du langage

L’analyse sémantique et l’analyse syntaxique sont les principales techniques utilisées pour faire des tâches de Natural Language processing.

L’analyse syntaxique : elle fait référence à la disposition des mots dans une phrase de façon à ce qu’ils aient un sens grammatical. Elle est utilisée pour évaluer la façon dont le langage naturel s’aligne sur les règles grammaticales.

L’analyse sémantique : elle fait référence à la signification véhiculée par un texte. C’est l’un des aspects difficiles du traitement naturel qui n’a pas encore été intégralement résolu, puisque l’humeur et le ton employé peuvent amener la machine au contre sens.

Transformation digitale dans le ferroviaire, comment adapter les structures à ce nouveau mode de fonctionnement ?

Transformation digitale dans le ferroviaire, comment adapter les structures à ce nouveau mode de fonctionnement ?

Aucun secteur n’échappe à la transformation digitale à l’instar de l’industrie ferroviaire. Quelques petites informations pour vous mettre sur les rails.

La digitalisation, pourquoi ?

La transformation digitale est une étape nécessaire au développement du secteur ferroviaire ainsi que de ses divers acteurs. De la planification sur le long terme aux tâches quotidiennes, elle devrait être bénéfique aux entreprises (réduction des coûts), aux clients, mais aussi contribuer à améliorer la compétitivité du train face aux autres moyens de transport. La digitalisation contribue à apporter des améliorations incontestables et un grand choix d’opportunités pour exploiter les trains afin de faire évoluer le modèle économique des entreprises en activité et de favoriser l’arrivée de nouveaux acteurs ayant des approches disruptives.

Acteurs concernés

La digitalisation du ferroviaire dépasse amplement le domaine des passagers (wifi, billets électroniques) mais concerne tous les acteurs de la chaîne :

  • Entreprises ferroviaires (transport des passagers et du fret),
  • Fournisseurs d’équipements,
  • Constructeurs des matériels roulants,
  • Gestionnaires d’infrastructures,
  • Entités chargées de la maintenance,
  • Entités publiques, etc.).

Technologies utilisées

La transformation digitale se base principalement sur l’usage des technologies de l’information et de la communication (TIC) dans le but de collecter, traiter, transmettre les données et instaurer un réseau de communication pour les usagers du ferroviaire. Ces technologies digitales incluent essentiellement :

  • des capteurs destinés aux matériels roulants et aux infrastructures,
  • des caméras vidéo (surveillance embarquée et au sol),
  • des systèmes de communication et d’affichage des informations,
  • des outils pour transmettre les données dans les trains, gares et infrastructures,
  • des appareils mobiles (smartphones et tablettes).

Ces outils entraînent un grand nombre de données dynamiques et induisent une communication entre divers objets nantis de capteurs. On parle d’Internet des objets (IOT).

La plupart des technologies requises sont déjà disponibles et ne demandent qu’à être renforcées pour répondre aux difficiles conditions d’exploitation des trains. Les actuels développements technologiques concernent la communication sans fil avec haut débit et les solutions ayant une faible consommation d’énergie pour une meilleure autonomie et une augmentation de la durée de vie du matériel.

Nous intervenons auprès des systèmes d’information, systèmes embarqués et plans de voie (et outils CAO) autour du transport ferroviaire. Découvrez nos expertises sans plus attendre !

Distinction des unités de sens dans un texte à destination des personnes dyslexiques.

Distinction des unités de sens dans un texte à destination des personnes dyslexiques.

Travail agréé par l'IJCAI (2019)

L’apparition du livre numérique est un progrès majeur pour permettre l’accès à la lecture, et donc souvent à la culture commune et au marché de l’emploi. En permettant l’enrichissement de textes par des béquilles cognitives, des formats d’accessibilité compatibles EPub 3 tels que FROG ont prouvé leur efficacité pour palier mais aussi réduire les troubles dyslexiques. Dans cet article, nous montrons comment l’Intelligence Artificielle, et en particulier le transfert d’apprentissage avec Google BERT, permet d’automatiser le découpage en unités de sens, et ainsi de faciliter la création de livre numériques enrichis pour un coût modéré.

Le deep learning au service des enfants dyslexiques

Les origines de la dyslexie sont multiples et encore sujettes à débat. Deux théories dominent l’études des troubles dyslexiques : La théorie phonologique (association incorrecte des graphèmes et des phonèmes) et la théorie visuelle (trouble du traitement visuel en amont du déchiffrement).

Les béquilles cognitives portant sur les mots ont prouvé leur efficacité (Snowling, 2000) pour une revue). La question est ici de mesurer l’apport d’une segmentation en rhèse en complément.

La segmentation en rhèse a été étudiée par (Chilles Hélène, 2012).  La compréhension de textes de Littérature ou de mathématique par 9 élèves de 12 ou 13 ans en situation de dyslexie était évaluée.  La conclusion est que le découpage en rhèse permet d’alléger la mémoire de travail et semble faciliter le traitement de l’information contenu, y compris sur des énoncés de mathématiques.

(Labal & Le Ber, 2016) a comparé les apports d’un prompteur inversé avec une granularité au mot ou à la rhèse. La population étudiée était de 18 enfants dyslexiques entre 8 et 12 ans. Il apparait que l’échelle du mot est en moyenne la plus pertinente pour la performance de lecture (Taux d‘ erreurs observés lors d’une lecture à voix haute, vitesse de lecture). Par contre l’écart type sur les scores obtenus sur les segmentations en rhèses est bien plus important que celui sur les découpages en mots :  Pour certains enfants, le découpage en rhèses est plus pertinent. Surtout, la granularité « rhèse » a été préférée par deux tiers des enfants. Il semble que le découpage en mots facilite la lecture orale davantage que la compréhension. Il apparait que les deux approches sont complémentaires et à favoriser en fonction de chaque lecteur. Le livre numérique répond bien à cette problématique dans la mesure où la granularité utilisée peut être laissée au choix du lecteur.

En plus de la segmentation visuelle, le découpage en rhèse autorise plusieurs béquilles cognitive au sein d’un livre numérique :

  • L’utilisateur peut activer un soutien audio : Une unité de sens est lue si l’on pointe dessus.
  • Un masque gris s’applique sur le texte, une fenêtre de lecture met en valeur l’unité de sens qui est pointée
  • Les lettres et les mots sont espacés, l’interligne est augmenté, le paragraphe est ferré à gauche et les unités de sens ne sont pas tronquées.

Rhezor 2 : Découpage syntaxique et apprentissage

La bibliothèque open source SpaCy (Honnibal, 2015) inclue des modèles propose des modèles neuronaux convolutifs pour l’analyse syntaxique et la reconnaissance d’entités. Spacy permet d’analyser un texte en utilisant des modèles de prédiction sur les mots. Chaque modèle est spécifique à un langage et est entraîné sur un ensemble de données. Le modèle est pré-entraîné sur 34 langues.

De la sorte, SpaCy peut identifier entre autres la nature grammaticale d’un mot, ou les liens existant entre les mots d’une phrase. L’ensemble de ces informations peut être représenté par un arbre de dépendance grammaticale. 

Le Rhezor 2 utilise l’arbre de dépendance de chaque phrase pour réaliser une segmentation en rhèse. Pour cela, un score est calculé pour chaque découpage possible en fonction de l’empan. Le score est défini en fonction des critères suivant : Type de dépendance segmentée ; Nombre de rhèses ; Équilibre dans les longueurs de rhèse ; Niveau du découpage dans l’arbre.

La pondération entre les critères est déterminée par un algorithme évolutif. Il est apparu que le type de dépendance était le critère principal. 

Deep Rhezor : Transfer Learning

Jusqu’à il y a peu de temps, le volume du corpus de textes fragmentés manuellement était bien trop faible pour envisager une approche basée uniquement sur les données.  Les avancées réalisées en 2018 sur le mécanisme d’attention et le concept de transformer (Vaswani, et al., 2017)  permettent maintenant de spécialiser un modèle appris avec un volume raisonnable d’exemples. Ce procédé, dit de « Transfer Learning » est utilisé depuis plusieurs années pour la reconnaissance d’image, mais son application au traitement automatisé du langage est très récente.

La librairie retenue est le modèle BERT de Google (Devlin, et al., 2018), publié en open source en Octobre 2018. Le jeu de données d’apprentissage est automatiquement généré à partir de Wikipedia.  D’abord, environ 15% des mots sont masqués dans chaque phrases pour essayer de les prédire. D’autre part, BERT a appris à prédire si deux phrases sont consécutives ou pas.

Google a généré plusieurs modèles. Deux modèles ont été générés pour l’Anglais et le Chinois. Un autre modèle deux fois plus petit (énorme néanmoins) et multilingue a également été créé.  Deux modèle deux fois plus grand ont également été testés pour pour l’Anglais et le Chinois.

La base de textes étant principalement en Français, c’est ce modèle « BERT-Base, Multilingual Cased » qui a été retenu. La perte en précision sur une tache de traduction est d’environ 3% par rapport à un modèle de même taille entrainé sur une seule langue (Devlin, 2018).   La taille maximum des phrase (max_seq_length) est fixée à 48 et celle du mini-lot à 16. Le Learning Rate est 2e-5 et le nombre d’epochs est de 3.

Le fine-Tuning mis en œuvre a consisté à associé une phrase avec une de ses sous-partie, et de créer un label indiquant s’il s’agit d’une rhèse ou non. Nous disposions de 10 051 phrases représentant 53 478 rhèses, dont un tiers environ ont été exclues de l’apprentissage et réservées pour l’évaluation. 

Nous vous proposons des solutions autour du deep learning et machine learning dans divers domaines. Découvrez nos expertises sans plus attendre !