Pourquoi utiliser un chatbot ?

IA hybride

Pourquoi utiliser un chatbot ?

Savez-vous ce qu’est un chatbot ? Ce programme informatique, doté d’une intelligence artificielle, est capable d’interagir avec les clients. Il simule une conversation tel un être humain avec un langage naturel et une personnalité à l’image de l’entreprise. L’usage du chatbot est en plein essor, mais pourquoi l’utiliser ?

Le chatbot l’allié du service client

Le service clientèle est souvent occupé à répondre aux mêmes interrogations, gérer des problèmes de commande ou rechercher un renseignement. Généralement, les informations sont présentes dans la FAQ du site. Le chatbot est l’outil idéal pour accomplir des tâches répétitives et chronophages :

  • Il répond instantanément aux questions simples ;
  • Pour les cas complexes, il récoltera les éléments de base d’un ticket pour faciliter l’intervention de l’équipe ;
  • Il est accessible 24 h/24 et 7 j/7 et sans aucune file d’attente ;
  • Il fonctionne sur tous les supports : téléphones, tablettes, ordinateurs, sur les réseaux sociaux et les sites internet.

Grâce au travail du bot, le service après-vente gagne en disponibilité pour se consacrer à des problèmes plus délicats et apporter une vraie valeur ajoutée.

Le chatbot plus qu’un simple agent conversationnel 

Lorsqu’une personne commence une discussion dans le chatbot, il démontre son intérêt pour les produits présentés ou l’entreprise. Le bot pourra accompagner l’utilisateur, lui demander ce qu’il souhaite, réagir de façon pertinente, proposer des remises, suggérer l’inscription à la newsletter. Il peut adapter ses réactions en fonction de l’historique de l’internaute. En offrant une expérience client complète et personnalisée, il va aider à convertir le visiteur en prospect et faciliter ses futurs achats.

Correctement configuré, le chatbot deviendra un réel atout pour répondre et satisfaire les besoins clients. Il est toujours réactif et disponible de jour comme de nuit. Le chatbot est un véritable assistant virtuel. Au quotidien, le bot peut être un gain de temps et d’argent pour les entreprises.

Ainsi, les chatbots sont utilisés par de plus en plus de secteurs comme on peut le voir avec Ouibot, le chatbot de la SNCF.

Comment le Machine Learning et le Big Data s’entremêlent aujourd’hui ?

formations intelligence artificielle

Comment le Machine Learning et le Big Data s'entremêlent aujourd'hui ?

De nos jours, le Machine learning et le Big data sont étroitement liés. Ils sont même interdépendants. En effet, l’apprentissage automatique des ordinateurs ne peut pas se faire sans le recours à de grands ensembles de données.

Mais en quoi consistent exactement ces deux disciplines ? Dans quelle mesure dépendent-elles l’une de l’autre ?

Machine learning et Big data : deux disciplines dans l'ère du temps

L’apprentissage automatique est une branche et une technique de l’IA (intelligence artificielle). Elle consiste à apporter des solutions à des problèmes statistiques complexes et d’exploitation de la donnée par la reconnaissance de motifs récurrents dans un ou plusieurs flux de données. De manière plus simple, il s’agit pour l’ordinateur de réaliser des analyses prédictives en s’appuyant sur des techniques statistiques. En quelques fragments de secondes, la machine réalise un forage des données et décèle des comportements anormaux ou suspects, telles les fraudes par exemple.

Le Big data peut être défini comme de vastes ensembles de données qui peuvent être collectés et analysés dans le but d’en dégager des informations stratégiques, utiles aux entreprises. Ces données peuvent aussi être utilisées lors de projets d’apprentissage automatique. Le Big data peut servir plusieurs objectifs : créer des campagnes marketing personnalisées, accélérer la prise de décisions, traiter des plages de données exhaustives entre autres.

Les liens entre l'apprentissage automatique et Big data

Le Machine learning repose sur le Big data. En effet, une machine ne peut pas développer son intelligence par cette technologie si elle ne dispose pas de grands ensembles de données. Plus la quantité de données est élevée, plus la solution finale apportée au problème est fine et précise. Prenons l’exemple des fraudes dans les paris sportifs. Pour apprendre à votre ordinateur à les identifier, il est préférable de lui soumettre les données de beaucoup de parieurs, pour identifier celles qui sont anormales.

On le comprend, ces deux notions fonctionnent ensemble. Le Big data est même le préalable nécessaire au fonctionnement de l’apprentissage automatique des machines.

Une IA hybride pour contrer le Phishing ?

ia hybride phising

Une IA hybride pour contrer le Phishing ?

Le phising : une entreprise sur 2 attaquée en 2021

D’après le Baromètre de la cybersécurité en entreprise CESIN 2022, plus d’une entreprise française sur deux a vécu au moins une cyberattaque au cours de l’année 2021 avec parfois des conséquences très graves sur l’entreprise telles que l’interruption du business, la détérioration du business ou encore la fuite des données. Tout cela engendre inévitablement un impact sur la notoriété de l’entreprise.

 De plus, plus de 80 % des événements de cybersécurité impliquent des attaques de phishing. Le phishing, ou hameçonnage en français, est une cyberattaque essentiellement par courriel basée sur l’ingénierie sociale qui est une forme de manipulation psychologique visant à extirper des informations confidentielles d’une personne ou d’une entreprise. Il existe différents types de mails de phishing :

  • Le spearphishing, généralement basé sur l’usurpation d’identité, cible une personne ou un petit groupe de personnes dans le but d’obtenir des informations confidentielles.
  • Le whaling est identique au spearphising sauf qu’il vise exclusivement des personnes d’entreprise de haut rang.
  • Le phishing par URL a pour objectif que la victime clique sur un lien frauduleux, ce qui pourrait entraîner le téléchargement d’un virus ou mener à une page ou des données confidentielles seraient requises.

IA hybride et Deep Learning au service de la cybersécurité

Depuis quelques années, tout le monde en parle. La solution serait de se doter d’une Intelligence Artificielle, plus précisément d’un algorithme d’apprentissage profond (Deep Learning), pour aider à analyser et donc à détecter les cyberattaques. L’IA est en effet en capacité de s’appuyer sur d’énormes volumes de données pour détecter les mails de phishing et donc agir vite (plus vite que l’être humain ?) quant à cette cyberattaque.

Néanmoins et comme toujours avec le Deep Learning, cela nécessite préalablement la constitution d’une base de données regroupant un grand nombre d’emails labellisés de nature « emails de phishing » mais aussi « emails normaux ». De surcroit, cette base de données doit être équilibrée, c’est-à-dire qu’elle ne doit pas avoir une classe surreprésentée par rapport à une autre, pour éviter que lors de l’apprentissage par les algorithmes de Deep Learning, il y ait un surapprentissage, c’est-à-dire qu’un modèle apprenne trop les particularités de la base de données sur laquelle il s’est entraîné.

Par ailleurs, la détection reste d’autant plus complexe que le corps d’un email, même de phishing, peut être vaste. Il est donc nécessaire de mettre en place des prétraitements pour « nettoyer » le contenu de l’email d’informations à la fois non pertinentes et polluantes pour un apprentissage efficace. Par exemple :

  • Passage du corps de l’email en minuscule,
  • Réduction de la ponctuation,
  • Tokenization
  • Lemmatisation,
  • Etc…

Aujourd’hui, de plus en plus de solutions apparaissent sur le marché et revendiquent une capacité de détection fiable et automatisée 24h/24, 7jours/7, des cybermenaces.

Le BRMS au service de la détection du Phishing ?

Malgré tout, il y a sans doute une autre voix consistant à mettre en place une IA hybride qui conserve bien entendu un dispositif d’algorithme d’apprentissage, complété par un dispositif d’inférence cognitive.

Spécialiste de la mise en place de solution de moteurs de règles / BRMS (Business Rules Management System), Pacte Novation travaille depuis de nombreuses années sur la complémentarité du Deep Learning avec des techniques de systèmes expert / moteurs de règles. Ce qui s’appelle l’IA Hybride. Pour rappel, les solutions de BRMS permettent la transposition d’une expertise humaine en règles métier qui pour certaines solutions sont des expressions fonctionnelles écrites en langage naturel.

Dans le contexte de la détection d’emails de phishing, un email, quel qu’il soit, est toujours constitué des mêmes parties : l’expéditeur, l’objet, le corps du mail, l’heure, la date et de liens. Si le corps du mail est traité avec une IA de type algorithme d’apprentissage, on peut aisément constituer des règles de contrôles et de filtres sur l’adresse de l’expéditeur, le domaine utilisé, les plages d’horaires durant lesquelles ces emails sont reçus, l’objet de l’email et potentiellement les liens de l’email.

Ainsi, nous pourrions avoir par exemple :

  • Une table de décision donnant un score de détection d’un email de phishing en fonction du nombre de chiffres dans l’adresse email :
  • Une règle sur le pays d’origine de l’expéditeur :

Si le pays d’origine de l’expéditeur de l’email n’est pas parmi (« fr », « com », « net », « gov », « edu », « org », « info ») alors affecter le score expéditeur à 40.

  • Une table de décision donnant un score de détection selon l’heure d’envoi de l’email :

Une IA hybride convaincante et adaptable

Cette approche hybride conserve donc sa capacité de détection fiable et automatisée tout en laissant la possibilité avec une expertise humaine d’adapter simplement et rapidement les règles de contrôle et de filtrage dans la détection d’une cyberattaque via un email de phishing.

Nous sommes intervenus dans le cadre d’atelier/ soutien au métier, Conception et réalisation des services de décisions. Nous avons également dispensé des formations ODM dans la partie Métier.

Utilisation de bases de données orientée graphes pour l’analyse statique de code

Utilisation de bases de données orientée graphes pour l'analyse statique de code

La R&D du Groupe dans les systèmes temps réel critiques

Un des axes forts du Groupe Pacte Novation est la qualité et la sureté de programme opérationnels pour les systèmes temps réel sur lesquels nous disposons d’une forte expérience.

Dans ces systèmes les bugs sont très coûteux et la détection de fautes et de bugs de programmation est aussi extrêmement difficile.

C’est pour cela que pour développer de plus grand systèmes en toute sécurité, nous utilisons et développons toute une panoplie d’outils allant des spécifications à la vérification de programmes. Pour les très gros programmes, la détection d’erreurs statiques est un point clef : nous sommes notamment responsables du logiciel AdaControl, qui permet de vérifier au quotidien les millions de lignes des programmes de gestion en temps réel du trafic aérien européen.

Le Groupe Pacte Novation s’implique dans la R&D comprenant un plan d’action pluriannuel avec à sa tête Laurent GOUZÈNES, Directeur Scientifique du Groupe. Avec trois docteur en informatique et un boursier CIFRE, le Groupe acte pour l’innovation technologique et le progrès informatique.

Le sujet en deux mots

Notre ingénieur développement logiciel Quentin DAUPRAT effectue une thèse dans le cadre de son doctorat à l’Université de Caen Normandie, en collaboration avec le Laboratoire de recherche en sciences du numérique GREYC.

Sa thèse portant sur le sujet « Structures de données et système de requêtes optimisées » est encadrée par Novasys Ingénierie sous l’égide de notre Directeur Technique Pierre DUBOSCQ.

Par ailleurs, une partie de ses travaux abordant le langage Ada, il travaille donc en étroite collaboration avec Jean-Pierre ROSEN (Adalog) et sous la Direction Scientifique de Laurent GOUZÈNES.

Ce document traite de l’analyse statique du code. Les besoins d’analyse devenant de plus en plus complexes et les volumes de code devenant de plus en plus grands, l’évolutivité des outils d’analyse de code devient l’un des défis actuels.
Nous explorons l’utilisation de technologies récentes, comme les bases de données de graphes pour représenter le code source et les modèles pour trouver des informations dans un graphe. Nous espérons que cela réduira le temps d’analyse d’un code source et améliorera l’efficacité de l’analyse. En essayant de répondre à la même requête par rapport à AdaControl, nous avons réussi à trouver des résultats qui n’avaient pas été détectés par l’approche programmatique. Nous espérons une amélioration supplémentaire lors de futures analyses comparatives.

Nous vous proposons des solutions autour du système d’information, système expert, embarqué et édition de logiciels,  nous permettant de répondre à la plupart des exigences du marché.