Emploi : Quels sont les profils de la Maîtrise du risque en AMOA

Emploi : Quels sont les profils de la Maîtrise du risque en AMOA ?

Les capacités ou compétences suivantes sont nécessaires pour une analyse des risques et une gestion efficace du risque AMOA :

Gestion des incidents AMOA

Il permet de développer un processus en boucle pour l’enregistrement des incidents, en faisant une analyse des risques sur le même qui permet de définir la cause profonde qui l’a provoquée et de pouvoir, sur la base de celle-ci, définir les actions opportunes avec lesquelles lui donner un traitement.

La gestion des incidents est un processus réactif, mais elle est d’une grande utilité pour les organisations, car elle leur permet de tirer des enseignements des problèmes et des conflits survenus afin de prendre les mesures qu’elles jugent appropriées pour les prévenir.

Il s’agit donc d’une capacité essentielle dans la gestion du risque opérationnel et elle s’applique principalement aux risques liés à des événements.

Gestion du changement

Comme mentionné précédemment, lorsque des changements sont introduits dans n’importe quel aspect des opérations, il est courant que de nouvelles sources de risque apparaissent et puissent générer des incidents. En ce sens, en appliquant un processus de gestion du changement approprié, nous contribuons à ce que le personnel puisse identifier, évaluer et approuver systématiquement les modifications à introduire avant de les rendre effectives.

La gestion du changement s’applique généralement aux risques motivés par le changement.

Évaluation des risques

Cette compétence implique la réalisation d’un processus permettant d’identifier les dangers dans les différentes opérations, afin de procéder à l’analyse appropriée en vue de les hiérarchiser pour pouvoir appliquer les contrôles pertinents et les surveiller efficacement.

Ce processus d’évaluation des risques est proactif afin de parvenir à une amélioration continue et est appliqué dans les évaluations réalisées pour améliorer les installations, les systèmes de production ou les zones de travail, afin d’atténuer tout risque opérationnel éventuel.

Cette troisième compétence peut être appliquée à tous les types de risques, qu’ils soient liés à la performance, aux événements ou aux changements.

Le BRMS (moteur de règles) : toujours un avenir ?

Le BRMS (moteur de règles) : toujours un avenir ?

A l’heure où l’Intelligence Artificielle est devenue LE sujet, l’incontournable atout dans les systèmes d’informations, le moteur de règles ou BRMS (technologie créée dans les années 70 et composante intégrante de l’IA) n’est pratiquement plus enseigné dans les écoles d’ingénieurs. Et pourtant, cette technologie est encore très activement utilisée dans tous les secteurs.

Deep Learning vs Expertise humaine métier

Quand on vous parle d’Intelligence artificielle, immédiatement vient à l’esprit le Machine Learning et le Deep Learning, ces algorithmes permettant un apprentissage par la machine d’un raisonnement à appliquer dans des situations similaires à celles sur lesquelles la machine s’est entrainée. Mais chaque entreprise est dotée d’une expertise métier humaine très riche, capable d’analyser et de construire une prise de décision adaptée à chaque cas rencontré. Pourquoi alors ne pas mettre pleinement à profit cette expertise en dotant les experts métiers de solutions informatiques leur permettant de transposer leur raisonnement ? Le moteur de règles est une solution.

Particulariser plutôt que catégoriser

Dans ce flot d’information qui nous inonde chaque jour, nous nous devons de faire le filtre, le tri pour porter notre intérêt sur ce qui nous paraît crédible et donc de confiance. La dématérialisation du contact et la numérisation de l’information n’empêchent pas le conseil pertinent et approprié. Aujourd’hui, qu’on le veuille ou non, des intelligences artificielles s’activent de plus en plus pour apprendre sur vous, votre comportement, vos préférences etc… Simplement, cet apprentissage ne conduit pas systématiquement à une réponse ou offre pertinente, adaptée à votre cas particulier, et en parfaite adéquation avec la stratégie des entreprises qui souhaitent vous « cerner ». L’intelligence de la statistique et de l’apprentissage n’exclut pas l’erreur de catégorisation. C’est là qu’intervient le BRMS !

Du système expert au BRMS

Il y a 40 ans, on commençait à modéliser le principe du diagnostic d’une pathologie à partir de symptômes cliniques ; c’était le début des systèmes experts qui, par instinct de survie et à coup de repackaging marketing au milieu des années 90, deviendront des Business Rules Management Systems (BRMS) 30 ans plus tard. Ce qui paraissait être de l’arrogance intellectuelle et scientifique est devenu une réponse au dialogue personnalisé et à la capitalisation de l’expertise. Aujourd’hui, le BRMS demeure une inférence cognitive présente dans tous les secteurs d’activité. La quasi-totalité des institutions financières françaises utilisent un moteur de règles pour leur processus d’octroi de crédit, notamment dans l’analyse du risque. Le secteur industriel comme financier et assurantiel ont mis en place des processus de tarification pilotés par les moteurs de règles, qui sont également une réponse dans les systèmes de détection de fraude et de lutte contre le blanchiment d’argent …

Les moteurs de règles (BRMS) ont encore un bel avenir !

Comment savoir si votre projet est adapté au Développement en Architecture Microservices ?

Comment savoir si votre projet est adapté au Développement en Architecture Microservices ?

Les applications développées en microservices procurent de nombreux avantages. Les utilisateurs jouiront entre autres d’une grande robustesse. De même, il sera plus facile de se lancer dans la maintenance, de par l’indépendance des services entre eux. Au vu des atouts, une entreprise peut envisager le projet. Elle devrait néanmoins connaître ses conditions. 

Le découpage en blocs fonctionnels

Le principe fondamental d’une architecture microservices est que chaque micro service répond à une fonctionnalité métier, et une seule. Il y a donc un découpage en blocs fonctionnels à faire de l’application à réaliser. Plus le projet est d’importance, plus ce découpage, à condition qu’il soit bien fait (pas ou peu d’interdépendance), accélère l’indépendance du développement, du test et du déploiement de ces microservices. La question peut se poser sur des projets de petite taille.

Beaucoup de microservices = gestion plus complexe ?

La question peut être posée dès lors que l’application finale se constitue de beaucoup de microservices, dont il faut gérer leur intégration et leur répartition dans une architecture physique capable de digérer l’exécution parallélisée de ses microservices. Dans l’hypothèse où il existe des dépendances entre les services, les mises à jour des services peuvent être source de complexité tant sur le plan des tests (pour revérifier une chaîne de microservices dépendants) que sur le plan du déploiement.

Une infrastructure adéquate

La gestion de la mémoire avec une mise en cache, une architecture distribuée restent des points cruciaux dans la mise en place d’une application orientée microservices. Par ailleurs, à l’heure où toutes les entreprises sont concernées par la cybersécurité, un nombre important de microservices peut accroitre une vulnérabilité face à la menace. Il y a donc un travail important de dimensionnement des ressources physiques, et de vérification des potentielles défaillances au niveau de chaque service.

Certaines peuvent être de haut niveau et abstraites, lorsqu’une personne utilise par exemple une remarque sarcastique pour transmettre une information. Pour bien saisir le langage humain, il faut comprendre non seulement les mots, mais aussi comment les concepts sont reliés pour transmettre le message souhaité.

Quelles sont les tendances des langages de programmation les plus demandés dans les SI ?

Quelles sont les tendances des langages de programmation les plus demandés dans les SI ?

Il peut sembler un peu tiré par les cheveux de penser que les langages les plus demandés en 2020 seront les mêmes que ceux qui triompheront en 2021. Toutefois, si l’on examine les tendances et les modèles de l’indice TIOBE, il semble que les changements ne soient pas radicaux d’une année à l’autre.

Les langages les plus populaires chez le développeur web

Prenons l’exemple des cinq langues les plus populaires en 2020 selon l’indice TIOBE. La liste comprend des langages aussi connus que C, Java, Python, C++ et C#. À l’exception de Python, les quatre autres figuraient déjà dans le TOP 5 en 2015 et 2010. De plus, si l’on compare l’indice 2020 et 2019, le seul changement se situe entre C et Java, qui échangent leur place dans le classement.

Mais si l’on descend dans la liste, on constate une augmentation de la popularité de certains langages de, bien qu’ils ne soient pas encore parmi les premiers. R, par exemple, se distingue, passant de la 19e à la 9e place en un an. Au cas où vous ne le sauriez pas, R est un langage spécialisé dans les graphiques et le calcul statistiques. Il est sous licence libre GNU et a été développé en 1993 par Bell Labs, anciennement propriété d’AT&T et maintenant propriété de Lucent Technologies.

Les autres langages qui ont fait un grand bond en avant sont Swift et Perl. Le langage d’Apple, lancé en 2014, bondit de la 16e à la 12e place, tandis que Perl (1987) passe de la 20e à la 13e place.

Nous avons mentionné le TOP 5 brièvement parce qu’il n’est pas nécessaire de les présenter. Java est toujours un langage utilisé dans les applications professionnelles ou de recherche grâce à sa polyvalence et à la facilité de programmation dans ce langage. En outre, il reste le langage officiel d’Android, même s’il accorde de plus en plus d’importance à Kotlin. À titre de curiosité, Kotlin est classé 34e dans l’indice TIOBE.

Conclusion

Depuis des années, Python est devenu un langage de référence, notamment pour le développeur web dans le traitement des données et dans des domaines de recherche en plein essor comme lintelligence artificielle ou l’apprentissage automatique.