Le text mining : automatisation du traitement de textes volumineux

text mining definition

Le text mining : automatisation du traitement de textes volumineux

text mining definition

Définition

Le Text Mining (fouille de texte ou extraction de connaissances) est l’ensemble des méthodes et outils destinés à l’exploitation de textes écrits volumineux : emails, fichiers word, documents powerpoint…

Afin d’extraire du sens de ces documents, le text mining se base sur des techniques d’analyse linguistique. La fouille de textes s’utilise pour le classement de documents, la réalisation de résumés de synthèses automatiques ou en assistance des veilles technologique et stratégique.

Utiliser l’informatique pour l’automatisation de la synthèse de textes est une pratique aussi ancienne que l’informatique. En effet, un chercheur d’IBM, en 1958, est l’inventeur du terme de « Business Intelligence ».

Actuellement, Google propose ce service à grande échelle en déposant un brevet pour la création d’un contenu original via la synthétisation automatique d’articles lus sur le web.

Applications

La fouille de textes permet l’analyse de la base des emails que reçoit une entreprise et de détecter le motif principal de contact. Il est possible d’élaborer des modèles pour un classement automatique des mails dans plusieurs catégories de motifs de contacts. Cette automatisation permet un envoi plus rapide de la demande au service et à la personne concernée afin d’accroître la satisfaction client.

L’émergence des réseaux sociaux développe l’analyse de sentiments (opinion mining). Elle consiste à analyser les textes volumineux afin d’en extraire les sentiments principaux pour mieux comprendre les opinions et perceptions émanant des textes analysés.

Les données sensibles se rapportant à l’origine raciale, à la santé, à la politique et à la religion des clients, notamment, des partenaires ou collaborateurs sont interdites par la CNIL. Le prochain Règlement Général sur la Protection des Données augmente l’obligation de résoudre cette problématique. Des algorithmes de text mining sont développés à cette fin.

L’extraction de connaissances s’impose dans d’autres tâches : actions marketing (formulaires de contact, réseaux sociaux), gestion de la relation client ou, entre autres, optimisation du contenu web dans le but d’un référencement naturel.

Qu’est-ce que l’ERTMS ?

ERTMS ferroviaire

Qu’est-ce que l’ERTMS ?

Dans un monde hyper connecté, le secteur des transports connaît lui aussi son lot de nouvelles technologies intelligentes. Pour survivre et rester dans la course de la performance, l’industrie des chemins de fer doit s’adapter au changement. Avez-vous entendu parler de l’ERTMS ? C’est un système Européen de gestion du trafic ferroviaire (European Rail Traffic Management System) qui s’inscrit dans une logique d’efficacité et de développement durable, mais pourquoi est-il essentiel de respecter les normes Européennes dans le domaine ferroviaire ?

ERTMS ferroviaire

Moderniser le système d’exploitation de circulation

L’ambition Européenne est d’accélérer la transformation industrielle vers le réseau du futur. Grâce à la norme ERTMS, les serveurs informatiques communiquent entre eux via un réseau de télécommunications dédié à la voie ferrée. Ce concept innovant améliore la conduite des trains à grande vitesse et augmente la fréquence des lignes. Le voyageur bénéficie ainsi d’un service de qualité et d’une information en temps réel.

Harmoniser la signalisation des chemins de fer Européens

Au-delà des frontières, le réseau national est mieux connecté au réseau ferré Européen. Le système nouvelle génération se généralise à tous les pays de l’Union Européenne et permet ainsi d’homogénéiser la circulation entre les villes et de fluidifier les échanges frontaliers. Ce système d’exploitation des infrastructures ferroviaires apporte une meilleure maîtrise du temps et de l’espace.

Sécuriser la circulation sur les rails

Le réseau digital du futur est connecté 24h/24 et permet de garantir une sécurité maximale sur les chemins de fer. La technologie ERTMS contrôle la distance de sécurité entre les machines, transmet en temps réel les consignes de conduite, et signale les incidents. Cette solution novatrice apporte réactivité et souplesse, c’est l’assistant technologique rêvé des conducteurs et aiguilleurs du rail. La normalisation dépasse son objectif avec en prime une réduction des coûts de maintenance.

Avec cette méthode agile de régulation des trains, les défis de performance et d’innovation sont relevés. Tous les feux de signalisation passent au vert : sécurité, fiabilité, et ponctualité !

Certaines peuvent être de haut niveau et abstraites, lorsqu’une personne utilise par exemple une remarque sarcastique pour transmettre une information. Pour bien saisir le langage humain, il faut comprendre non seulement les mots, mais aussi comment les concepts sont reliés pour transmettre le message souhaité.

En intelligence artificielle, que signifie NLP ?

NLP intelligence artificielle

En intelligence artificielle, que signifie NLP ?

Le NLP (Natural Language processing ou Traitement Naturel du Langage en français) est la technologie utilisée pour aider les machines à comprendre le langage naturel de l’homme. Il n’est pas aisé d’apprendre aux machines à comprendre notre manière de communiquer. D’importantes avancées ont cependant été réalisées ces dernières années pour faciliter aux machines la compréhension de notre langage.

NLP intelligence artificielle

C’est quoi le traitement naturel du langage ?

Le NLP est une branche de l’intelligence artificielle traitant de l’interaction entre les ordinateurs et les êtres humains en utilisant le langage naturel. L’objectif ultime du traitement naturel du langage est de lire, déchiffrer, comprendre et donner un sens aux langages humains d’une façon qui soit utile.

La majorité des techniques de ce traitement reposent sur l’apprentissage automatique pour déduire le sens des langues humaines. Cette technologie se positionne par ailleurs comme étant la force motrice des applications fréquentes comme les applications de traduction de langues, les traitements de texte (pour vérifier l’exactitude grammaticale des textes), les applications d’assistant personnel, etc.

Un ingénieur aux compétences techniques transverses

L’ingénieur DevOps s’inscrit dans l’évolution des métiers du secteur informatique. C’est un facilitateur technique qui accompagne les équipes agiles afin de réduire le temps de mise en production. En garantissant un passage automatisé entre les différents environnements, il s’assure de l’intégration, la qualité et le déploiement du code produit. Sa double compétence se traduit par une expertise certaine aussi bien sur la partie développement que sur le versant exploitation. Pour mener à bien sa mission, il doit maîtriser des outils spécifiques permettant de programmer, gérer, tester et administrer les systèmes informatiques.

Le Natural Language processing est-il difficile ?

Le traitement naturel du langage est considéré comme un problème difficile en informatique. C’est cependant la nature du langage humain qui rend le NLP difficile. Les règles régissant la transmission des informations via des langues naturelles ne sont pas faciles à comprendre pour les machines.

Certaines peuvent être de haut niveau et abstraites, lorsqu’une personne utilise par exemple une remarque sarcastique pour transmettre une information. Pour bien saisir le langage humain, il faut comprendre non seulement les mots, mais aussi comment les concepts sont reliés pour transmettre le message souhaité.

Les techniques utilisées dans le traitement naturel du langage

L’analyse sémantique et l’analyse syntaxique sont les principales techniques utilisées pour faire des tâches de Natural Language processing.

L’analyse syntaxique : elle fait référence à la disposition des mots dans une phrase de façon à ce qu’ils aient un sens grammatical. Elle est utilisée pour évaluer la façon dont le langage naturel s’aligne sur les règles grammaticales.

L’analyse sémantique : elle fait référence à la signification véhiculée par un texte. C’est l’un des aspects difficiles du traitement naturel qui n’a pas encore été intégralement résolu, puisque l’humeur et le ton employé peuvent amener la machine au contre sens.

Data Mining, comment analyser les sources de données dans un processus de Big Data ?

Data mining big data

Data Mining, comment analyser les sources de données dans un processus de Big Data ?

À l’ère moderne où le Big Data est devenu un enjeu de prime importance, l’exploration de données se présente comme un processus qui permet de définir des modèles utiles à partir d’une grande quantité de données. Dans les lignes à suivre, découvrez quelques techniques employées dans le Data Mining.

Data mining big data

Qu’est-ce que le Big Data ?

Le Big Data se présente comme une solution technologique qui offre la possibilité de faire à la fois la collecte, l’analyse, la comparaison, la reconnaissance, la classification et l’utilisation de différentes données telles que des discussions ou commentaires sur les sites sociaux, des images, des documents et autres types de fichiers. On désignera plus généralement par Big Data des ressources d’informations structurées ou non structurées qui, selon leurs qualités et leurs quantités, peuvent servir à apporter de la valeur ajoutée d’une manière ou d’une autre. L’exploitation de ces ressources va ainsi imposer l’utilisation d’outils analytiques de différents types.

Méthode du Data Mining dans un processus du Big Data

Extraction de données

Le développement des technologies de l’information a généré une quantité énorme de données dans divers domaines, données qu’il faut capter et stocker.Il a fallu donc imaginer des technologies et architectures massivement parallèles pour répondre au volume de données à capter en temps réel. Les moyens de stockage ont eux aussi évolué pour répondre à la volumétrie et la rapidité de manipulation sous l’impulsion des acteurs influenceurs du net qui ont fait naître le No SQL (Not Only SQL) pour digérer une information qui peut être un texte, une image, une vidéo, etc …L’idée est bien de permettre de stocker, de filtrer et de manipuler ces données précieuses afin de procéder à des prises de décision pointues. L’exploration de données se présente donc comme un processus d’extraction d’informations et de modèles utiles à partir de données précédemment stockées.

Exploration de données : un processus en plusieurs étapes

L’exploration de données est un processus logique qui est utilisé, comme le nom l’indique, pour parcourir une grande quantité de données afin de trouver des éléments utiles. Un objectif, entre autres, de cette technique est de mettre en place ou de trouver des modèles analytiques qui étaient auparavant inconnus. Une fois ces modèles trouvés, il peut en être fait usage pour prendre certaines décisions stratégiques afin de booster le développement des activités d’une entreprise ou autre entité. Les trois étapes impliquées dans le processus peuvent être listées comme suit :

  • Exploration : dans la première étape de l’exploration, les données sont nettoyées et transformées sous une autre forme. Par la suite, les variables importantes et la nature des données en fonction du problème sont déterminées.
  • Identification des modèles : une fois que les données ont été explorées, affinées et définies pour les variables spécifiques, la deuxième étape consiste à identifier des modèles. Il s’agira d’identifier et de sélectionner les modèles qui permettent la meilleure prédiction.
  • Déploiement : les modèles sont déployés pour obtenir le résultat souhaité.