Pourquoi utiliser un chatbot ?

chatbot service client

Pourquoi utiliser un chatbot ?

Savez-vous ce qu’est un chatbot ? Ce programme informatique, doté d’une intelligence artificielle, est capable d’interagir avec les clients. Il simule une conversation tel un être humain avec un langage naturel et une personnalité à l’image de l’entreprise. L’usage du chatbot est en plein essor, mais pourquoi l’utiliser ?

chatbot service client

Le chatbot l’allié du service client

Le service clientèle est souvent occupé à répondre aux mêmes interrogations, gérer des problèmes de commande ou rechercher un renseignement. Généralement, les informations sont présentes dans la FAQ du site. Le chatbot est l’outil idéal pour accomplir des tâches répétitives et chronophages :

  • Il répond instantanément aux questions simples ;
  • Pour les cas complexes, il récoltera les éléments de base d’un ticket pour faciliter l’intervention de l’équipe ;
  • Il est accessible 24 h/24 et 7 j/7 et sans aucune file d’attente ;
  • Il fonctionne sur tous les supports : téléphones, tablettes, ordinateurs, sur les réseaux sociaux et les sites internet.

Grâce au travail du bot, le service après-vente gagne en disponibilité pour se consacrer à des problèmes plus délicats et apporter une vraie valeur ajoutée.

Le chatbot plus qu’un simple agent conversationnel 

Lorsqu’une personne commence une discussion dans le chatbot, il démontre son intérêt pour les produits présentés ou l’entreprise. Le bot pourra accompagner l’utilisateur, lui demander ce qu’il souhaite, réagir de façon pertinente, proposer des remises, suggérer l’inscription à la newsletter. Il peut adapter ses réactions en fonction de l’historique de l’internaute. En offrant une expérience client complète et personnalisée, il va aider à convertir le visiteur en prospect et faciliter ses futurs achats.

Correctement configuré, le chatbot deviendra un réel atout pour répondre et satisfaire les besoins clients. Il est toujours réactif et disponible de jour comme de nuit. Le chatbot est un véritable assistant virtuel. Au quotidien, le bot peut être un gain de temps et d’argent pour les entreprises.

Ainsi, les chatbots sont utilisés par de plus en plus de secteurs comme on peut le voir avec Ouibot, le chatbot de la SNCF.

Distinction des unités de sens dans un texte à destination des personnes dyslexiques.

mobidys deep learning

Distinction des unités de sens dans un texte à destination des personnes dyslexiques.

Travail agréé par l'IJCAI (2019)

L’apparition du livre numérique est un progrès majeur pour permettre l’accès à la lecture, et donc souvent à la culture commune et au marché de l’emploi. En permettant l’enrichissement de textes par des béquilles cognitives, des formats d’accessibilité compatibles EPub 3 tels que FROG ont prouvé leur efficacité pour palier mais aussi réduire les troubles dyslexiques. Dans cet article, nous montrons comment l’Intelligence Artificielle, et en particulier le transfert d’apprentissage avec Google BERT, permet d’automatiser le découpage en unités de sens, et ainsi de faciliter la création de livre numériques enrichis pour un coût modéré.

deeplearning mobidys

Le deep learning au service des enfants dyslexiques

Les origines de la dyslexie sont multiples et encore sujettes à débat. Deux théories dominent l’études des troubles dyslexiques : La théorie phonologique (association incorrecte des graphèmes et des phonèmes) et la théorie visuelle (trouble du traitement visuel en amont du déchiffrement).

Les béquilles cognitives portant sur les mots ont prouvé leur efficacité (Snowling, 2000) pour une revue). La question est ici de mesurer l’apport d’une segmentation en rhèse en complément.

La segmentation en rhèse a été étudiée par (Chilles Hélène, 2012).  La compréhension de textes de Littérature ou de mathématique par 9 élèves de 12 ou 13 ans en situation de dyslexie était évaluée.  La conclusion est que le découpage en rhèse permet d’alléger la mémoire de travail et semble faciliter le traitement de l’information contenu, y compris sur des énoncés de mathématiques.

(Labal & Le Ber, 2016) a comparé les apports d’un prompteur inversé avec une granularité au mot ou à la rhèse. La population étudiée était de 18 enfants dyslexiques entre 8 et 12 ans. Il apparait que l’échelle du mot est en moyenne la plus pertinente pour la performance de lecture (Taux d‘ erreurs observés lors d’une lecture à voix haute, vitesse de lecture). Par contre l’écart type sur les scores obtenus sur les segmentations en rhèses est bien plus important que celui sur les découpages en mots :  Pour certains enfants, le découpage en rhèses est plus pertinent. Surtout, la granularité « rhèse » a été préférée par deux tiers des enfants. Il semble que le découpage en mots facilite la lecture orale davantage que la compréhension. Il apparait que les deux approches sont complémentaires et à favoriser en fonction de chaque lecteur. Le livre numérique répond bien à cette problématique dans la mesure où la granularité utilisée peut être laissée au choix du lecteur.

En plus de la segmentation visuelle, le découpage en rhèse autorise plusieurs béquilles cognitive au sein d’un livre numérique :

  • L’utilisateur peut activer un soutien audio : Une unité de sens est lue si l’on pointe dessus.
  • Un masque gris s’applique sur le texte, une fenêtre de lecture met en valeur l’unité de sens qui est pointée
  • Les lettres et les mots sont espacés, l’interligne est augmenté, le paragraphe est ferré à gauche et les unités de sens ne sont pas tronquées.

Rhezor 2 : Découpage syntaxique et apprentissage

La bibliothèque open source SpaCy (Honnibal, 2015) inclue des modèles propose des modèles neuronaux convolutifs pour l’analyse syntaxique et la reconnaissance d’entités. Spacy permet d’analyser un texte en utilisant des modèles de prédiction sur les mots. Chaque modèle est spécifique à un langage et est entraîné sur un ensemble de données. Le modèle est pré-entraîné sur 34 langues.

De la sorte, SpaCy peut identifier entre autres la nature grammaticale d’un mot, ou les liens existant entre les mots d’une phrase. L’ensemble de ces informations peut être représenté par un arbre de dépendance grammaticale. 

Le Rhezor 2 utilise l’arbre de dépendance de chaque phrase pour réaliser une segmentation en rhèse. Pour cela, un score est calculé pour chaque découpage possible en fonction de l’empan. Le score est défini en fonction des critères suivant : Type de dépendance segmentée ; Nombre de rhèses ; Équilibre dans les longueurs de rhèse ; Niveau du découpage dans l’arbre.

La pondération entre les critères est déterminée par un algorithme évolutif. Il est apparu que le type de dépendance était le critère principal. 

Spacy réseau de neurones convolutif

Deep Rhezor : Transfer Learning

Jusqu’à il y a peu de temps, le volume du corpus de textes fragmentés manuellement était bien trop faible pour envisager une approche basée uniquement sur les données.  Les avancées réalisées en 2018 sur le mécanisme d’attention et le concept de transformer (Vaswani, et al., 2017)  permettent maintenant de spécialiser un modèle appris avec un volume raisonnable d’exemples. Ce procédé, dit de « Transfer Learning » est utilisé depuis plusieurs années pour la reconnaissance d’image, mais son application au traitement automatisé du langage est très récente.

La librairie retenue est le modèle BERT de Google (Devlin, et al., 2018), publié en open source en Octobre 2018. Le jeu de données d’apprentissage est automatiquement généré à partir de Wikipedia.  D’abord, environ 15% des mots sont masqués dans chaque phrases pour essayer de les prédire. D’autre part, BERT a appris à prédire si deux phrases sont consécutives ou pas.

Google a généré plusieurs modèles. Deux modèles ont été générés pour l’Anglais et le Chinois. Un autre modèle deux fois plus petit (énorme néanmoins) et multilingue a également été créé.  Deux modèle deux fois plus grand ont également été testés pour pour l’Anglais et le Chinois.

La base de textes étant principalement en Français, c’est ce modèle « BERT-Base, Multilingual Cased » qui a été retenu. La perte en précision sur une tache de traduction est d’environ 3% par rapport à un modèle de même taille entrainé sur une seule langue (Devlin, 2018).   La taille maximum des phrase (max_seq_length) est fixée à 48 et celle du mini-lot à 16. Le Learning Rate est 2e-5 et le nombre d’epochs est de 3.

Le fine-Tuning mis en œuvre a consisté à associé une phrase avec une de ses sous-partie, et de créer un label indiquant s’il s’agit d’une rhèse ou non. Nous disposions de 10 051 phrases représentant 53 478 rhèses, dont un tiers environ ont été exclues de l’apprentissage et réservées pour l’évaluation. 

deep learning machine learning
mobidys deep learning

Nous vous proposons des solutions autour du deep learning et machine learning dans divers domaines. Découvrez nos expertises sans plus attendre !