Une IA hybride pour contrer le Phishing ?

Une IA hybride pour contrer le Phishing ?

Le phising : une entreprise sur 2 attaquée en 2021

D’après le Baromètre de la cybersécurité en entreprise CESIN 2022, plus d’une entreprise française sur deux a vécu au moins une cyberattaque au cours de l’année 2021 avec parfois des conséquences très graves sur l’entreprise telles que l’interruption du business, la détérioration du business ou encore la fuite des données. Tout cela engendre inévitablement un impact sur la notoriété de l’entreprise.

 De plus, plus de 80 % des événements de cybersécurité impliquent des attaques de phishing. Le phishing, ou hameçonnage en français, est une cyberattaque essentiellement par courriel basée sur l’ingénierie sociale qui est une forme de manipulation psychologique visant à extirper des informations confidentielles d’une personne ou d’une entreprise. Il existe différents types de mails de phishing :

  • Le spearphishing, généralement basé sur l’usurpation d’identité, cible une personne ou un petit groupe de personnes dans le but d’obtenir des informations confidentielles.
  • Le whaling est identique au spearphising sauf qu’il vise exclusivement des personnes d’entreprise de haut rang.
  • Le phishing par URL a pour objectif que la victime clique sur un lien frauduleux, ce qui pourrait entraîner le téléchargement d’un virus ou mener à une page ou des données confidentielles seraient requises.

IA hybride et Deep Learning au service de la cybersécurité

Depuis quelques années, tout le monde en parle. La solution serait de se doter d’une Intelligence Artificielle, plus précisément d’un algorithme d’apprentissage profond (Deep Learning), pour aider à analyser et donc à détecter les cyberattaques. L’IA est en effet en capacité de s’appuyer sur d’énormes volumes de données pour détecter les mails de phishing et donc agir vite (plus vite que l’être humain ?) quant à cette cyberattaque.

Néanmoins et comme toujours avec le Deep Learning, cela nécessite préalablement la constitution d’une base de données regroupant un grand nombre d’emails labellisés de nature « emails de phishing » mais aussi « emails normaux ». De surcroit, cette base de données doit être équilibrée, c’est-à-dire qu’elle ne doit pas avoir une classe surreprésentée par rapport à une autre, pour éviter que lors de l’apprentissage par les algorithmes de Deep Learning, il y ait un surapprentissage, c’est-à-dire qu’un modèle apprenne trop les particularités de la base de données sur laquelle il s’est entraîné.

Par ailleurs, la détection reste d’autant plus complexe que le corps d’un email, même de phishing, peut être vaste. Il est donc nécessaire de mettre en place des prétraitements pour « nettoyer » le contenu de l’email d’informations à la fois non pertinentes et polluantes pour un apprentissage efficace. Par exemple :

  • Passage du corps de l’email en minuscule,
  • Réduction de la ponctuation,
  • Tokenization
  • Lemmatisation,
  • Etc…

Aujourd’hui, de plus en plus de solutions apparaissent sur le marché et revendiquent une capacité de détection fiable et automatisée 24h/24, 7jours/7, des cybermenaces.

Le BRMS au service de la détection du Phishing ?

Malgré tout, il y a sans doute une autre voix consistant à mettre en place une IA hybride qui conserve bien entendu un dispositif d’algorithme d’apprentissage, complété par un dispositif d’inférence cognitive.

Spécialiste de la mise en place de solution de moteurs de règles / BRMS (Business Rules Management System), Pacte Novation travaille depuis de nombreuses années sur la complémentarité du Deep Learning avec des techniques de systèmes expert / moteurs de règles. Ce qui s’appelle l’IA Hybride. Pour rappel, les solutions de BRMS permettent la transposition d’une expertise humaine en règles métier qui pour certaines solutions sont des expressions fonctionnelles écrites en langage naturel.

Dans le contexte de la détection d’emails de phishing, un email, quel qu’il soit, est toujours constitué des mêmes parties : l’expéditeur, l’objet, le corps du mail, l’heure, la date et de liens. Si le corps du mail est traité avec une IA de type algorithme d’apprentissage, on peut aisément constituer des règles de contrôles et de filtres sur l’adresse de l’expéditeur, le domaine utilisé, les plages d’horaires durant lesquelles ces emails sont reçus, l’objet de l’email et potentiellement les liens de l’email.

Ainsi, nous pourrions avoir par exemple :

  • Une table de décision donnant un score de détection d’un email de phishing en fonction du nombre de chiffres dans l’adresse email :
  • Une règle sur le pays d’origine de l’expéditeur :

Si le pays d’origine de l’expéditeur de l’email n’est pas parmi (« fr », « com », « net », « gov », « edu », « org », « info ») alors affecter le score expéditeur à 40.

  • Une table de décision donnant un score de détection selon l’heure d’envoi de l’email :

Une IA hybride convaincante et adaptable

Cette approche hybride conserve donc sa capacité de détection fiable et automatisée tout en laissant la possibilité avec une expertise humaine d’adapter simplement et rapidement les règles de contrôle et de filtrage dans la détection d’une cyberattaque via un email de phishing.

Nous sommes intervenus dans le cadre d’atelier/ soutien au métier, Conception et réalisation des services de décisions. Nous avons également dispensé des formations ODM dans la partie Métier.

Utilisation de bases de données orientée graphes pour l’analyse statique de code

Utilisation de bases de données orientée graphes pour l'analyse statique de code

La R&D du Groupe dans les systèmes temps réel critiques

Un des axes forts du Groupe Pacte Novation est la qualité et la sureté de programme opérationnels pour les systèmes temps réel sur lesquels nous disposons d’une forte expérience.

Dans ces systèmes les bugs sont très coûteux et la détection de fautes et de bugs de programmation est aussi extrêmement difficile.

C’est pour cela que pour développer de plus grand systèmes en toute sécurité, nous utilisons et développons toute une panoplie d’outils allant des spécifications à la vérification de programmes. Pour les très gros programmes, la détection d’erreurs statiques est un point clef : nous sommes notamment responsables du logiciel AdaControl, qui permet de vérifier au quotidien les millions de lignes des programmes de gestion en temps réel du trafic aérien européen.

Le Groupe Pacte Novation s’implique dans la R&D comprenant un plan d’action pluriannuel avec à sa tête Laurent GOUZÈNES, Directeur Scientifique du Groupe. Avec trois docteur en informatique et un boursier CIFRE, le Groupe acte pour l’innovation technologique et le progrès informatique.

Le sujet en deux mots

Notre ingénieur développement logiciel Quentin DAUPRAT effectue une thèse dans le cadre de son doctorat à l’Université de Caen Normandie, en collaboration avec le Laboratoire de recherche en sciences du numérique GREYC.

Sa thèse portant sur le sujet « Structures de données et système de requêtes optimisées » est encadrée par Novasys Ingénierie sous l’égide de notre Directeur Technique Pierre DUBOSCQ.

Par ailleurs, une partie de ses travaux abordant le langage Ada, il travaille donc en étroite collaboration avec Jean-Pierre ROSEN (Adalog) et sous la Direction Scientifique de Laurent GOUZÈNES.

Ce document traite de l’analyse statique du code. Les besoins d’analyse devenant de plus en plus complexes et les volumes de code devenant de plus en plus grands, l’évolutivité des outils d’analyse de code devient l’un des défis actuels.
Nous explorons l’utilisation de technologies récentes, comme les bases de données de graphes pour représenter le code source et les modèles pour trouver des informations dans un graphe. Nous espérons que cela réduira le temps d’analyse d’un code source et améliorera l’efficacité de l’analyse. En essayant de répondre à la même requête par rapport à AdaControl, nous avons réussi à trouver des résultats qui n’avaient pas été détectés par l’approche programmatique. Nous espérons une amélioration supplémentaire lors de futures analyses comparatives.

Nous vous proposons des solutions autour du système d’information, système expert, embarqué et édition de logiciels,  nous permettant de répondre à la plupart des exigences du marché. 

Critères d’éligibilité d’un BRMS

Critères d’éligibilité d’un BRMS

Aux origines du BRMS (moteur de règles)

La technologie des moteurs de règles / BRMS ne date pas d’hier. Née sous l’impulsion des américains dans les années 70 avec notamment la conception et de l’algorithme de RETE, elle a connu ses premières gloires début des années 80 sous l’appellation des systèmes experts. Le moteur de règle est une technologie ayant considérablement évolué, en traversant des années plus creuses (les années 90) avant de rebondir, au début de la bulle Internet, en solution technologique de Business Rules Management System (BRMS).

Ainsi, aujourd’hui, une vingtaine d’éditeurs postulent sur ce segment technologique, pour la plupart américains. Pour autant, il s’agit pour les clients d’apprécier la pertinence ou non de l’usage d’un BRMS pour répondre à la problématique métier qui est la leur.

Alors, comment apprécier cette pertinence ?

Le BRMS en quelques mots

Tout d’abord, il s’agit de transposer la logique métier, historiquement codée dans le patrimoine informatique des entreprises ou issue de l’expertise humaine, en règles communément appelées règles SI ALORS. Néanmoins, le SI contient les conditions qui doivent être évaluées à VRAI pour que la règle soit éligible au déclenchement. Une règle éligible s’exécute, c’est-à-dire que le moteur de règles exécute les actions contenues dans la partie ALORS de la règle. Une règle exécutée peut permettre potentiellement qu’une autre règle devienne éligible et ainsi de suite.

Ainsi, un raisonnement logique apparait par le déclenchement successif des règles éligibles.

Voici un exemple :

Par ailleurs, certains éditeurs fournissent en réalité 3 représentations possibles de la logique métier : les règles, les tables de décision (qui s’apparentent à une table de feuille Excel) et des arbres de décision.

Au final, l’objectif d’une technologie BRMS est bien d’améliorer la lisibilité de la logique métier répartie dans les applicatifs du SI et de permettre ainsi une meilleure maintenabilité de cette logique en créant une indépendance entre le contenu d’un ensemble de règles (service de règles) et la manière dont on le consomme au sein du SI.

Comment évaluer la pertinence ou non d’un BRMS ?

Malgré les avantages énoncés du BRMS, son usage n’est pas systématiquement pertinent au regard du contexte et de la problématique des entreprises qui se poseraient la question de l’utiliser.

De ce fait, il s’agit de vérifier un certain nombre de critères d’appréciation qui sont résumés ici :

La démarche de Pacte Novation est axée autour de la réalisation d’ateliers avec les différents acteurs partie prenante dans le futur projet, l’analyse et la retranscription des éléments recueillis durant ces ateliers, la rédaction de notes, et la restitution/présentation des conclusions aux instances de décision du client.

En tout état de cause, la clé du succès d’un projet BRMS est d’abord et avant tout, l’adhésion à cette technologie de toutes les parties prenantes du projet.

Nous vous proposons des solutions autour du système d’information, système expert, embarqué et édition de logiciels,  nous permettant de répondre à la plupart des exigences du marché. 

Qu’est-ce que l’ERTMS ?

Qu’est-ce que l’ERTMS ?

Dans un monde hyper connecté, le secteur des transports connaît lui aussi son lot de nouvelles technologies intelligentes. Pour survivre et rester dans la course de la performance, l’industrie des chemins de fer doit s’adapter au changement. Avez-vous entendu parler de l’ERTMS ? C’est un système Européen de gestion du trafic ferroviaire (European Rail Traffic Management System) qui s’inscrit dans une logique d’efficacité et de développement durable, mais pourquoi est-il essentiel de respecter les normes Européennes dans le domaine ferroviaire ?

Moderniser le système d’exploitation de circulation

L’ambition Européenne est d’accélérer la transformation industrielle vers le réseau du futur. Grâce à la norme ERTMS, les serveurs informatiques communiquent entre eux via un réseau de télécommunications dédié à la voie ferrée. Ce concept innovant améliore la conduite des trains à grande vitesse et augmente la fréquence des lignes. Le voyageur bénéficie ainsi d’un service de qualité et d’une information en temps réel.

Harmoniser la signalisation des chemins de fer Européens

Au-delà des frontières, le réseau national est mieux connecté au réseau ferré Européen. Le système nouvelle génération se généralise à tous les pays de l’Union Européenne et permet ainsi d’homogénéiser la circulation entre les villes et de fluidifier les échanges frontaliers. Ce système d’exploitation des infrastructures ferroviaires apporte une meilleure maîtrise du temps et de l’espace.

Sécuriser la circulation sur les rails

Le réseau digital du futur est connecté 24h/24 et permet de garantir une sécurité maximale sur les chemins de fer. La technologie ERTMS contrôle la distance de sécurité entre les machines, transmet en temps réel les consignes de conduite, et signale les incidents. Cette solution novatrice apporte réactivité et souplesse, c’est l’assistant technologique rêvé des conducteurs et aiguilleurs du rail. La normalisation dépasse son objectif avec en prime une réduction des coûts de maintenance.

Avec cette méthode agile de régulation des trains, les défis de performance et d’innovation sont relevés. Tous les feux de signalisation passent au vert : sécurité, fiabilité, et ponctualité !

Certaines peuvent être de haut niveau et abstraites, lorsqu’une personne utilise par exemple une remarque sarcastique pour transmettre une information. Pour bien saisir le langage humain, il faut comprendre non seulement les mots, mais aussi comment les concepts sont reliés pour transmettre le message souhaité.